
14
CALCULATION-INTENSIVE
APPLICATIONS

DESCRIPTION

As I identified in an earlier chapter, many applications naturally lend themselves to

the grid architecture. These applications are classified as being very computation-

intensive and where the computational paths are data-dependent, they therefore

can be run in parallel across many of the compute grid’s nodes. The ability to run

pieces of the computational process in parallel is where the first class of use case

for grid computing comes into play. The use cases are responsible for defining

the compute grid and the early stages of the data grid.

Today, many areas of research that use the grid technology, including

. Various engineering disciplines using computer-aided design26

. Genome research27

. Physics research: high-energy physics28 and fusion research29

. Earthquake research30

The data sets for these applications are, for the most part, static in nature. For

example, DNA sequences, seismic data, and collision patterns of high-energy

beams in a particle beam accelerator, do not change once the data are recorded.

In the commercial industry, an area of interest is risk management. There is one dis-

tinct difference between the risk management analysis and the abovementioned

applications, which is that the data are far from static and tend to be dynamic.

153

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.

The data continually change on a real-time basis (at varying time intervals: seconds,

minutes) to more batch-type updates, which can be daily, monthly, quarterly, and

so on.

Regardless of whether the application processes static and/or dynamic data, there

is one commonality in all these applications: that all these application produce

interim state data sets, during the analysis process where large temporary data

sets are generated, used, and ultimately deleted. We can see that performance optim-

izations can be gained by smart data management of these interim data sets, indepen-

dent of and in addition to any programmatic and procedural optimizations.

USE CASES

Calculation-intensive applications tend to naturally process the same algorithm

repeatedly at varying iterations where only the input data set differs between

all the iterations used to perform calculations. A large set of financial service

applications fit this paradigm, including Monte Carlo simulations, binomial approxi-

mations, and Black–Scholes models, for example. Thus, parallel processing

(parallelizable) can be easily achieved for these types of applications.

What does it mean for an application to be parallelizable? An example would be

an identical unit of work that is typically run inside a processing loop and given a

different data set to operate over for each iteration of the loop wherein each pass

through the loop is independent of the ones that came before it; such a unit of

work can be parallelized. Figure 14.1 illustrates how such applications can be par-

allelized through worklets running at the same time independently of each other in a

grid compute environment.

We will start out be identifying each unit of work as a “worklet.” Worklets can be

assigned to execute on different machines in the compute grid depending on capacity

levels. Applications that consist of these worklets are parallelized applications.

Worklets executed in parallel in the compute grid take advantage of the inherent

nature of the compute grid, where a large numbers of machines are available to exe-

cute computational tasks. Worklets, via the compute grid, are assigned to the numer-

ous compute nodes of the grid to be run in parallel, transforming a serial process into

a parallel one and therefore reducing the overall time of execution and leveraging

ideal resources. This feature is becoming increasingly essential in today’s business.

The window of operations continues to decrease, therefore mandating more and

more near-real-time results as soon as the data are available and with the lowest

latency possible.

In the early 1990s, universities and other areas of research found themselves with

large complex computational analysis problems to solve without a supercomputer

on which to run these computations. Necessity is the mother of invention; then

came grid compute, since the objective was to make the most of what was available.

All systems, including networked computers in labs, student unions, libraries, and

classrooms, were utilized to perform such tasks. The hardware resources that

were used in such research environments can be classified as represented in the

154 CALCULATION-INTENSIVE APPLICATIONS

following formula:

TotalComputationalResource

ffi
X

computers�on�campus

1

NetworkedComputerComputationalResource

The total hardware resources were a function of all the available resources in the

whole facility. With this, they were able to divide the overall problem into atomic

for (int i = 0; i < m_timeStep-1; i++)
{

 IGFDataPoint aPointInPath = dCart.makeDataPoint();
 double stdNormal = Math.random();

 aPointInPath.point().put(0, stdNormal);
 points.add(aPointInPath);

}

Compute grid

Data grid

Worklets

Parallel

processing of

worklets in grid

Figure 14.1. Parallelizable processes.

USE CASES 155

work units or worklets and parallelize the workload across all the available and

capable machines on the network. Glue together the results into a cohesive data

set, and the effect is a high-powered computer or the compute grid.

The need to perform more and more complicated, data-intensive tasks and lim-

ited resources has been the driving force behind the evolution of grid technology.

Very similar forces are also found in the commercial enterprise and are causing

widespread interest in further developing grid computing. The first commercial

grid applications are similar in nature to those that gave birth to grid computing,

where intensive analytical applications needed to perform with greater speed and

the number of data sets that they required continued to increase. The applications

spanned many industries, as indicated below:

. Energy exploration—where and how to best drill for oil and gas through the

analysis of seismic data

. Biopharmaceutical

Protein folding

Clinical trials—drug interactions with the human body through simulation

. Government—various types of government applications for the analysis of

large data sets and pattern detection

. Financial services—quantitative analysis to accelerate risk reporting

. Computer-aided design—aerospace, chip design, and other applications

The common thread connecting these diverse industries is that the business appli-

cations require complex data analysis over increasingly larger data sets. The analyti-

cal process that traverses and mines these data sets can require execution times

spanning days. Time is our most precious and irreplaceable commodity, so any

reasonable effort to maximize its utilization is well spent. Shortening the analysis

times yields more available time and resources to perform increasingly complex

analysis. Grid technology offers a reasonable solution to not only maximum utiliz-

ation of time but also to provide a powerful, flexible, fungible, and cost-effective

computing environment.

GENERAL ARCHITECTURE

The general architecture for this class of applications in the compute grid has

focused on the management of computer resources and task distribution, which is

the compute grid, and less on data management or the data grid. Historically, grid

vendors have been perfecting and commercializing the core of the compute grid

technology. The compute grid is used to manage compute resources—which

machines are currently available and of these, which are capable of executing the

worklet; the management of task assignment, data assignment, and retrieval for

each worklet; and finally the assembly of the individual worklet’s result data set

into the larger application result data set format. The final job of the compute grid

156 CALCULATION-INTENSIVE APPLICATIONS

is to perform data packaging from each worklet since each has been assignment to a

different compute node. Figure 14.2 illustrates this data assembling processes and

final storage of the data to some data store, such as a database or a file on disk.

In the workflow shown in Figure 14.2, the compute grid manages data retrieval

and distribution along with the worklets across the compute grid. This is a six-

step process starting with data retrieval required by each compute node; this main

process retrieves the necessary data from the various external data sources either

before or during the worklet creation/assignment process of the compute grid.

The compute grid management process then packages the input data necessary for

the worklet to perform its task and ships it along with the worklet to the respective

compute node to perform the task. However, before shipping the data–worklet com-

bination, the data must be packaged. Part of this packaging is data marshaling. Once

the compute node receives the worklet, it must unpackage the input data before it

can start to process the tasks as defined in the worklet. The unpackaging process

involves reversing the data marshaling process to enable the compute node to

read the data in a format that it understands and can operate on. Once the task is com-

plete, the resulting data sets must be packaged (and marshaled) before being sent

 Compute grid

(1) Get data from source

(2) For each worklet

package and marshal data

and ship them with the worklet

to the compute node

(4) When each worklet

completes, package and

marshal the results and ship

them back to compute grid

engine

(3) Unmarshal and unpack

the data, execute worklet

(5) Unmarshal and unpack

worklet result and

accumulate until all worklets

return

(6) Reassemble final result,

marshal and return to target

store

Figure 14.2. Workflow without a data grid.

GENERAL ARCHITECTURE 157

back to the compute grid management process. The compute grid management pro-

cess receives the resulting data sets from all the worklets that it dispatched,

unpackages each one (again, part of the unpacking process consists in unmarshaling

the data), and assembles them back together to form one cohesive data result set for

final storage in some sort of persistence.

As can be seen, this process of packing, marshaling, sending, receiving, unmar-

shaling, and the unpackaging of data must happen twice, once for the input data to

the worklets and once for the resulting data set of the worklets. This process must

occur for each worklet followed by a data assembly process so that the worklet

results can be understood at the application level. The more worklets that the com-

pute grid dispatches, the better the parallelization of the overall process will be, but

this, too, has a price. The efficiency gained by parallelizing the work is counter-

balanced, either in part or in whole, by the overly complex data packaging/
marshaling work.

Some level 0 data grids mitigate this performance consequence by creating a dis-

tributed file system across the compute nodes of the compute grid or via GridFTP.

Each transfers the responsibility of data packaging and transport from the compute

grid to the level 0 data grid; however, there may still be data marshaling involved by

either the data grid or the worklets–application combination. However, these sol-

utions do not address performance enhancement techniques such as data affinity.

The current commercially available grid solutions are tailored to these calcu-

lation-intensive applications with the static data sets. However, as corporate America

adopts grid technology and begins to leverage it throughout the organization to

encompass tasks beyond those of static data sets, compute grid solutions will need

to be augmented with a data grid that also manages dynamic data, a level 1 data grid.

Unless running overnight batch processes, the majority of business applications is

dynamic in nature and requires level 1 data grids. Some of the examples listed earlier

for risk management, in either financial services or government security, are charac-

teristically real-time and dynamic data sets. Figure 14.3 illustrates the integration of

the data grid into the compute grid architecture, where many worklets perform their

defined tasks in parallel.

Level 1 data grids inherently lend themselves to the transient data sets produced

by calculation-intensive processes such as a Monte Carlo simulation. These pro-

cesses generate and leverage vast amounts of interim data that are used throughout

the running simulation to produce an end result but are not part of the end result

itself. A comparison of the quantity of data input and output from a Monte Carlo

simulation to that of the interim data generated by the running simulation is analo-

gous to an iceberg, with the input and output data representing the tip of the iceberg

and the interim data as the majority of the iceberg that you do not see.

In the specific case of a Monte Carlo simulation used in the financial markets, the

interim data sets can be, but not limited to, random-number surfaces and yield

curves. Worklets produce and consume these interim data on a regular basis.

Some produce the random-number surfaces; others produce the yield curves,

while others will use parts of each to produce other interim data surfaces, all leading

to the final resulting data surface. In a later chapter an example of the code for part of

158 CALCULATION-INTENSIVE APPLICATIONS

a Monte Carlo simulation is provided using a level 1 data grid. One of the main

objectives in creating and maintaining a Monte Carlo simulation is performance

tuning. There are various methods of increasing the performance of a simulation.

Here I will introduce performance enhancement techniques that a level 1 data

grid offers above and beyond that gained by traditional computational performance

enhancement techniques.

Data enhancement techniques take two forms: data reuse and data affinity. For

some simulations, many of the interim data surfaces can be reused from one simu-

lation to another. Keeping these surfaces active in a data grid eliminates the need to

continually regenerate them from one simulation run to another. While a level 0 data

grid can address data reuse, it may not yield any performance benefits as it may be

faster to regenerate on a local node than to query, locate, transport, package, and

marshal the data out of the data grid and to the compute node where they are

needed. A level 1 data grid inherently addresses many of the data accessibility

issues inherent into a level 0 data grid, thus minimizing much of the work and per-

formance bottlenecks to such an extent that it would be cheaper to reuse interim data

surfaces than to regenerate them from one simulation to another.

Compute grid

Data grid

Figure 14.3. Workflow with the data grid: level 1 data grid.

GENERAL ARCHITECTURE 159

Data affinity is addressed by level 1 data grids. Data affinity is the ability to group

interim data sets to the compute nodes that most often generates and uses them, thus

further reducing data movement. With this strategy, data are locally resident on the

compute node, eliminating the entire data packaging–movement process overhead.

Between data reuse and data affinity in the data grid, the overall processing time of a

Monte Carlo simulation can be dramatically reduced by as much as half.

DATA GRID ANALYSIS

In order to analyze calculation-intensive application with the data grid, I will

leverage the Monte Carlo simulation as a model. The first step is to start with the

application definition expressions as presented in an earlier chapter.

The application definition equation for a distributed environment is

Application Workð Þ, Datað Þ, Timeð Þ, Geographyð Þ, Queryð Þð Þ

where

Work batch=atomic, synchronous=nonsynchronousð Þ

Data overallsize, atomicsize, transactional, transient, queryableð Þ

Time Real-Time, NotReal-Time, NearReal-Timeð Þ

Geography Topology, NetworkBandwidthð Þ

Query basic, complexð Þ

The “interim” data surfaces of a Monte Carlo simulation can be prebuilt and sub-

sequently used to produce the final result surface (the output result set of the simu-

lation). However, some of the interim result surfaces may be dependent on other

interim surfaces being partially or completely built. For the purposes of this discus-

sion, we will consider the building of an interim data surface as a “batch” process

even though in reality it is a completely parallelized grid process. There exists an

interdependency of interim result surfaces that prevents all interim result surfaces

from being simultaneously generated independently of each other. Figure 14.4 rep-

resents an example of such interim dependency.

Therefore, when there is an interdependency of two surfaces as illustrated in

Figure 14.4 for A and B, where B is contingent on A being in place before the build-

ing of B can start, then coordination of the two processes is necessary. Further com-

plexities will exist when only parts of a surface are dependent on parts of another

surface. For instance, to continue with our example illustrated in Figure 14.4, not

all of surface A must be completely built before construction of surface B can

start. Therefore, this will result in creation of a partial dependency between the

two surfaces. In both instances there exists an element of synchronization of proces-

sing with regard to start building interim surface B only when “X%” of surface A is

complete, where the internal processing of both A and B are completely atomic and

160 CALCULATION-INTENSIVE APPLICATIONS

nonsynchronous. In this case X% represents some variable of completeness. From

the Monte Carlo expressions in the earlier chapter, the Monte Carlo simulation

was represented as

MonteCarloSimulation

Work W_T1ð Þ,W_group1 W_T2ð Þ,W_T3ð Þð Þ . . . ,W_Tnð Þð Þ,

Data_inputð Þ,Data_outputð Þ,Data_S1ð Þ, . . .Data_Skð Þ,

Timeð Þ,

Geographyð Þ,

Queryð Þ

0

B

B

B

B

@

1

C

C

C

C

A

60% of data surface A
must be complete before
data surface B can start

construction

Data surface B

X

Y

Z

R

Data surface A

X

Y

Z

R

Figure 14.4. Inter data surface dependencies.

DATA GRID ANALYSIS 161

where

‘‘W_Tx” represents a task that has no dependencies on another task;

‘‘W_group” represents a grouping or tasks where interdependency exists,

thus an element of synchronicity:

W_T1 atomic, nonsynchronousð Þ

W_T2 atomic, nonsynchronousð Þ

W_T3 atomic, nonsynchronousð Þ

W_Tn atomic, nonsynchronousð Þ

W_group1 batch, synchronousð Þ

The input and output data surfaces are small in comparison to the interim data sur-

faces that will be necessary to derive the final output data surface.

Data_input 1kbits, 100bits, nontransactional, transient, nonqueryableð Þ

Data_output 1kbits, 100bits, transactional, transient, nonqueryableð Þ

Data_S1 3Gbits, 100bits, nontransactional, transient, queryableð Þ

Data_Sn 3Gbits, 100bits, nontransactional, nontransient, queryableð Þ

The ability to run simulations in near real time enables business decisions to be made

with accurate and timely data. This simulation is to run in the confines of a single

data center and the applications requirement to analyze (complex queries) any of

the data sets is not essential to the business.

Time Near-Real-Timeð Þ

Geography DataCenter, 1GbitEthernetð Þ

Query basicð Þ

The data management policies that need to be imposed are represented as

DataDistributionPolicy ¼ DDP

MonteCarlo DDP,

MCRegion,

Scope ALLð Þ,

Pattern Automatic, Random

MCDDPPattern,

WhiteNoiseð Þ,

NULL,

NULL,

NULL,

NULL

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

162 CALCULATION-INTENSIVE APPLICATIONS

DataReplicationPolicy ¼ DRP

MonteCarlo_DRP,

MCRegion,

7,

Scope ALLð Þ

0

B

B

@

1

C

C

A

SynchronizationPolicy ¼ SP

MonteCarlo_SP,

MCRegion,

Scope Boundary ‘‘intra”ð Þ, NULLð Þ,

Transactionality ‘‘nontransactional”ð Þ,

LoadStore List ‘‘MarketFeed_DLP”ð Þ, NULLð Þ,

Events NULLð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Use if Events to coordinate interdependencies between data surfaces

EventNotificationPolicy ¼ ENP

W_Group_SurfaceCoordination,

MCRegion,

Scope List W_Group_Atomsð Þð Þ,

StartDependentSurfaceBuildsð Þ

0

B

B

B

@

1

C

C

C

A

D
a
ta

 g
ri

d
 Q

o
S

Application complexity
Work
Time
Data

Transactional

L
e
ve

l
0

L
e
ve

l
1 Atomic

Asynchronous
Dynamic data
Nontransactional

Atomic
Synchronous
Dynamic data
Nontransactional

Figure 14.5. QoS–application requirement quadrant graph.

DATA GRID ANALYSIS 163

DataLoadPolicy ¼ DLP

MarketFeed_DLP,

MCRegion,

Granularity Grouping 1ð Þ, Frequency 50ð Þð Þ,

MarketDataAdapterð Þ

0

B

B

B

@

1

C

C

C

A

DataStorePolicy ¼ N=A

The graph in Figure 14.5 shows nontransactional application characteristics;

however, some, but not all, of the application’s data surfaces are dependent on

each other, thus creating a dual characteristic of nontransactional for data surfaces

with no dependencies and transactional where the data surfaces are interdependent.

164 CALCULATION-INTENSIVE APPLICATIONS

